Understanding the Behavior of Time Series Data

by Frankie Cancino | at Minnebar spring 2020 (canceled)

It can be difficult to find anomalous behavior in data or pinpoint what metrics could potentially be related. In order to understand the behavior of this data, Target open-sourced the Python library matrixprofile-ts. Using this library, we can layer models on top of the Matrix Profile to find when anomalous behavior occurs or when different metrics in different areas affect each other. This talk will briefly go over the matrixprofile-ts library and examples of where deep learning models can be applied to complement it.


All levels

Frankie Cancino

Senior Engineer and Data Scientist for Target. Grad student at the University of Minnesota earning a Master of Science degree in Business Analytics. Founder and organizer of Data Science Minneapolis. Passionate about artificial intelligence and building innovative tech for social good.